DNA deposition on carbon electrodes under controlled dc potentials.
نویسندگان
چکیده
The native calf-thymus DNA molecule fully dispersed in solution was deposited onto highly oriented pyrolytic graphite, carbon fiber column and disk electrodes under controlled dc potentials. X-ray photoelectron spectroscopy, atomic force microscopy and electrochemical investigations indicated that network structures of DNA could be formed on various carbon electrode surfaces resulting in significant surface enlargement. The conformation, conductivity and stability of the deposited DNA layer largely depended on the concentration of the DNA deposition solution, the applied dc potential and the mode of electric field. The optimal condition for deposition of the DNA on carbon fiber disk electrode was determined as a deposition potential of 1.8 +/- 0.3 V versus 50 mM NaCl-Ag/AgCl and a deposition DNA solution of 0.1 mg ml(-1). Under this condition, the DNA was covalently bonded on the electrode surface forming a three-dimensional modified layer, generating a 500-fold enlarged effective electrode surface area and similarly enlarged current sensitivity for redox species, such as Co(phen)3(3+). A possible mechanism for the formation of DNA networks is proposed.
منابع مشابه
Thick Film Deposition of Carbon Nanotubes by Alternating Electrophoresis
Electrophoretic deposition of carbon nanotubes (CNTs) using alternating current electric fields (0.01-1000 Hz) is reported. Pure acetone was used as suspending medium. Two parallel gold electrodes were used as depositing substrate. The effect of depositing parameters such as frequency and three waveforms (sinusoidal, rectangular and triangular) on deposit yield was investigated. According to ou...
متن کاملImmobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer
In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a ...
متن کاملKinetic investigation of carbon nanotube deposition by DC electrophoretic technique
In this paper, kinetics of DC electrophoretic deposition EPD of carbon nanotubes CNTs is investigated. Carbon nanotubes suspended in pure ethanol with addition of magnesium nitrate was used as deposition media. The effect of main EPD parameters such as deposition time, applied voltage and the CNT concentration on deposit yield was investigated. The variation of current density vs. time and the ...
متن کاملComparison of Binary and Ternary Compositions of Ni-Co-Cu Oxides/VACNTs Electrodes for Energy Storage Devices with Excellent Capacitive Behaviour
Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...
متن کاملNanomaterial-modified Flexible Micro-electrode Array by Electrophoretic Deposition of Carbon Nanotubes
Micro-electrode arrays (MEAs) and micro-electrodes are used in a variety of medical applications for recording action potentials or stimulating neurons. To have an excellent signal-to-noise ratio, the contact between the neuronal tissue and the micro-electrodes must be very close. Therefore, a flexible MEA with a large number of electrodes on a large area is necessary. In this work, a flexible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2005